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In this work a class of problems of the calculus of variations is con- 
sidered, and an application of the developed theory to multistage 

rockets is given. 

In contrast to [l-31, the control functions uj(t) are here assumed 
to be known discontinuous functions of time. 

A problem of the Bolza-Mayer type in the calculus of variations is 

posed and necessary conditions (conditions of stability) are derived 

for the determination of the points ti of discontinuity of the control 

function uj(t) in order to obtain the extrema of certain functionals. 

1. A process which takes place in a certain dynamical system is de- 
scribed by means of n ordinary first order differential equations 

g, = I, - f, (21, . . ., Tn. $r . . ., u,, 1) = 0, (s = 1, . . ., n) (1.1) 

and by a finite set of relationships 

(1.2) 

In equations (1.1) and (1.2) the x$(t) are the coordinates which de- 

termine the position of the dynamical system, while the uj(t) are the 

discontinuous control functions; m - r of them (say, ul, . . ., urn-r) are 

given as explicit functions of time. 

At the initial moment, t = t,,, the position of the system is deter- 

mined by the values of the coordinates 

x* (f”) = lsO (s x 1, . . . . n) (1.3) 
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and by the values of the control functions 

uj (1,) =- Uj’> (j =- 1, . . .( nr) (1.4) 

The coordinates at the time t = T are related by the equations 

D, z_ 4), IJ,, (T), 7 ] = 0, (I = 1,. . . ) p < n) (1.5) 

It is required to determine the moments of time ti which determine 

an extremum to a certain functional 

J >= J Ix, (T), ‘I’] (1.6! 

under conditions (1.1) to (1.5). 

2. We form, as is usually done 11,3!, the auxi 1 iary functional 

1’ ‘r n i- 
1 :: J 1_ ; p$,, 4. 

U 
x h,irs i- r, pkqlr 

L J 
dl (2.1) 

l-1 :,, s--l k=l 

Here, As(t), vk(') and pl are the undetermined Lagrange multipliers. 

Since the right-hand side differs from J and only by terms which vanish 

at an extremum, the conditions for extrema of I and J coincide. 

In evaluating the variation of the right-hand side of equation (2.1) 

we assume that in the time interval (te, T) considered, there exist two 

points t, and t2 where the functions uj(t) are discontinuous 

I,, < t, < t, < 7’ 

The values of the above introduced functions we shall label with a 

superscript 1 in the interval (tu, fl) (for example, we write xs (‘)(O. 
u.(I)(t); 

J 
in the interval (tl, t2) we shall label them with the super- 

script 2 (for example, xs (2)(L), Uj(2)(f)). and in the interval (t2, T) 

with the superscript 3. 

Then the variation of expression (2.1) can be represented in the form 

l--l 1, s=1 n=1 

$6 [ { -j) hb(?$,,(2) + i pk(%),;k(Y)j dt + 6 r { ; )&,,3) + i ,@),,$3)} dt (2.2) 

v 

1, s=1 k=l h S=l k=l 

The presence of the dlscontinuities in the control functions, forces 

us to consider the changes in the points, ti (i = 1, 2), of discontinu- 

ity when we compute the variation of the functional AI. 

If the time is not fixed (T is free) then there exists the relation 

,~~,‘3’ (j-1 zz: h-S(3) (T) + isc3) (2’) 6T (2.3) 
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between the “variation of the end” Arst3’(T) and the “variation at the 

end” 6xsf3)(T). 

The variation AJ can be expressed in the form 

For the variation of plQl + . . . + p,$ one obtains an analogous equa- 

tion. 

Since the initial data, which determine the position of the dynamical 

system, are known ((1.3) to (1.4)) and the control functions are also 

determined on the interval (t,, ti), then, in accordance with the formu- 

lation of the problem, the function xs (‘) (t) of time can be determined 

from the corresponding system of equations, and. hence, the variation of 
the first integral in expression (2.2) must be zero. For the same reason 

6t,(‘) (tJ = 0 (2.5) 

namely, the “variation of the end” of the left trajectory may have an 
increment along this trajectory, and hence the equation, similar to equa- 
tion (2.3). will have the form 

A$) (tI) = 2, (l) (t1) &, (2.6) 

The values of the “variation at the end” 8xgt2)( fl) and of the “vari- 
ation of the end” A.zsc2) (t 1) of the intermediate trajectory are related 

by the equation 

Azi2’ (tJ = c~z,(~) (tJ + r,(2) (tJ bt, (2.7) 

Because of the discontinuity of the trajectory xs( t) at the points 
of the discontinuities of the control functions ui(f), we have 

AZ,(‘) (tI) = Azi2) (tJ = AZ, (11) (2.6) 

From equations (2.6) to (2.6) it follows that 

For the variation of the right trajectory xs (3)(t) at the point t2 
we obtain 

6zJ3) (tz) = by (t*) + [Q2) (t*) - i,(3) (t*)] 61, (2.10) 

Taking into account equations (2.3) to (2. lo), we can transform the 
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variation of the functional AI into the following form 

-t- i IQ2 (t*) - p (t,)l 6x,(“) (1,) - [ i xg(3) (1,) (Q) (t*) - &(3’ (&))I 6t, $ 
5-l s-1 

fz n 

t uo fia (a Lz (2’ - I, (z1(2’ , . . . ) t,C2’ , u1C2’ ( . . . ( l$J2’, f)] + 
6 8 

. 

1, s=1 

+ i &‘,j2) [ i a,(‘) af, _ i 42) @b ]} dt + 

k=l .3=1 a+j2) p=* auk@’ 

+ i {i fa,‘“’ [c&(3) - f, (x1@) ( . . .( *,1(3), Lp ( . . ., 43) , t)] + 

t* s=1 

In the derivation of formula (2.11) we have made use of the equations 

12 n II n 

’ \L h (‘) 6; i2’ dt = 2 A$) (t2) dxg(*) (t2) - 8 2 p (1,) 8zs(Z) (tl) - 

I, s=1 s-=1 r=1 

- j $ jL,(2)6z8(2) dt 

1 (2.12) 

t i h,(“)*Q’dt = i a, (3) tT) 8x,(31 CT) - i hJ3) (12) bZs (&)- 

T, 

i 
* L=l (I=1 a=1 

The type of the function u.(ti, T, t), which is determined in any 

concrete problem by the condl i ions of that problem, does not affect the 

procedure of the proof. Therefore, for the sake of definiteness, we shall 

use u.(‘)(t, tl) and ujf3)(t, tl, t2). Then the variations of the con- 

trol ‘function uj( t) will have the form 
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(2.13) 

The variations 

bP,(?) (t), nx, C3) (f), 8X8@) (t*). 6h,@’ (t), ah,‘;” (t), spp (1), @L/ (t) 

(k = 1, . . .* r), bt,, ht?, 6T, n - p 

of the variations Fs(T) are independent. 

By determining the 2r multipliers LIP (t), l.Q3) (t) so that the co- 

efficients of the variations S,(*) and $(3) (V=m-r + 1, . . . . I) 

are zero, and determining the p multipliers pl so that the coefficients 

of the dependent variations 6s’3’(T) are zero, we make sure that the co- 

efficients of the remaining independent variations are also zero. As a 

result we obtain the equations which must be satisfied by the coordi- 

nates of the system and by the control functions 

i 
21 = f,i (2, 2, t) qlki (2, 1) I- 0, (s = 1, . . ., n; k - 1,. . ., r; i = 2, 3) (2.14) 

The 

Asi@) 

The 

The 

The 

The _. 

differential equations which are satisfied by the functions 

are the following: 

(s = 1, . . ., n; i = 2,3) 

boundary conditions for the functions hsc3’(T) are 

Id t3) (T) + a 8 
axs(3) (T) C J+i p& =o 

1=1 I 
boundary condition is of the form 

$[J+f: @,]=O 
1=1 

(2.15) 

(2.16j 

(2.17) 

conditions of continuity for the functions As(t) are 

h 6 C2) (1,) = li 8 @) (tJ (s = 1, . . ., n) (2.18) 

equations for the determination of the multipliers pk (*l(t) and 

pk “‘(t) are 

(k = 1, . . ., r; i = 2, 3j (2.19) 

For the points of discontinuity t 1 and t2 of the control function 
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‘jCt)* 
we have the following conditions: 

Thus we have obtained the following: 

2n first order differential equations for the determination of the 

functions 

:cs (2’ (Q, 2J3) (t) (s = 1, . . ., n) 

2n first order differential equations for the determination of the 

multipliers 

JJ2) (t), La (3) (t) (9 = I, . . ., n) 

2r relations for determining the functions 

uk@) (t), pkC3) (t) (k = 1, . . ., r) 

The quantities which are still unknown are 4n arbitrary constants, 

obtained in solving the corresponding first order differential equations, 

the quantities tl, tg and T, and also the p multipliers pI (I = 1,. . . , p); 
altogether 4n + p + 3 quantities. 

For the determination of these unknown quantities we have the n 

boundary conditions (2.16), n conditions (2.18) of the continuity of the 

multipliers AS(t), two conditions (2.20) at the point tq of discontinu- 

ity of the control, n conditions of continuity of the coordinates at the 

point tl, xs (l)(t$ = p(tl). and n conditions of the continuity of 

the coordinates at the point t2, xsc2)( t2) = xs (3)(t2), and the p rela- 

tions (1.5); altogether 4n + p + 3 conditions. 

Therefore, the problem of determining the extremum of the functional 

J can be solved. 

We note, that following [l, 31, one can introduce a Lagrange function 

L given by the equation 

* r 

rr=l k=l 

The system of differential equations (2.15), which determines the 

multipliers AS’(t) (S = 1. . . ., n; i = 2, 3) can be expressed in the 

form 
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while conditions (2.18) of the continuity of the functions h,(t) can be 

written as 

[%I,,_,= [$a],,+, 
Let us introduce the function H given by the equation 

where 

H=h, & f,, H, = - i pk%/, 

@==I k=l 

Taking into account the fact that 

i3L 8H 
-= - 
au, au, 

we may write conditions (2.20) in the form 

Vhlti-,,-[Wti+o+ [[mirgz] dt=o(i=1,2) 
1: k=l 

Next, using the equation 

we express (2.2) finally in the form 

3. As an example let us consider the application of the theory pre- 

sented above to the computation of a two-stage rocket which is moving 

vertically in a nonhomogeneous gravitational field in a space where 

aerodynamic forces can be neglected. 

The equations of motion of the center of mass of the composite rocket 

have the form 

;=_.g- V$’ i = v, g = Ro(l -F) (3.1) 

where no is the mass of the composite rocket which changes according to 

a linear law, v is the velocity of the center of mass of the composite 

rocket, h is the altitude above the earth’s surface, v’ is the relative 
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velocity of the expelled particles, g is the acceleration of gravity, R 
is the earth’s radius and go is the acceleration of gravity at the 
earth’s surface, where h = 0. 

Let us introduce a dimensionless mass for the multistage rocket 

m 
U=--- 

m0 

where m0 is the starting mass of the rocket. 

If one considers an auxiliary plane {u, t), then the parts of the 

curve II = u(t) which correspond to the operating regime of the engines 

will be represented by inclined line segments while the parts of the 

separation of the stages will be vertical segments (see Figure). 

The engines of the successive subrockets work without intermissions. 

Let us denote the ratio of the “mass of the dry weight” of the ith 

(i = 1, 2) stage to the mass of its fuel by ki. Furthermore, let us use 

the notation 

u_ = Ii (ti - O), ui = u (ti + 0) (3.3) 

The function u(t) is determined analytically by 2n equations (n = 2) 

“i- zzz “i--l - Bi (‘i - ‘i-.1)7 ui =: u_ (1 _t ki) - kp+ (3.4) 

where Pi is the fuel expenditure per second of the engine of the ith 

stage. 

We note that t,, = 0, tg = T and u2 = mp/mO (mp is the mass of the use- 

ful load). 

For what follows it is necessary to evaluate the partial derivatives 

&Lj auj- 
-zii ’ ati (j = 1, 2; i = 1) 

For a two-stage rocket the evaluations yield 

au,_ 
at,=- 11 B 2 = - h&z, ‘2 = - PI (1 + kl) (3.5) 

$f = Bz (1 + k,) - PI (1 + k,) = 0 (3.6) 

It is required to find the time moment tI of the transition from the 

first stage of the composite rocket when the velocity U(T) at the end of 

the active part has reached its maximum, if the active flight time of 

the rocket is fixed (specified). 

The differential equations (2.15) for the determination of the 
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undetermined multipliers A,(t) and A,(t) take on the form 

i, = - a,, i, = -vaa 1 (3.7) 

where 

va = Bg,iR (3.8) 

Boundary conditions (2.16) are (h is free) 

a, (T) = - i, a, (T) = 0 (3.9) 

The values A,(t) and Al(t), found by means of equations (3.7) and 

(3.9). have the form 

a, ~=coshv (T - t). h, z.. V sinhV fT - t) (3.10) 

Condition (2.20) can be expressed in the form 

(3.11) 

Integrating the last integral by parts, we can transform (3.11) to the 
form 

(3.12) 

1, 

For given values of pi and Vir, equation (3.12) determines the re- 

quired moment of time tI. 

If the rocket is uniform PI = p2 = p, VIr = Vzr = V’ and kl = kz = k, 

then equation (3.12) takes on the form 

(3.13) 

It should be mentioned that the computation of the optimal moment tI 

can be performed even if the law of motion of the center of mass of the 

rocket is not known. 

As a numerical example, let us consider the determination of the time 

moment t 1 for a two-stage uniform rocket with the following character- 
istics: 

"0 = 1000 kg sec’/meter, mp = 50 kg sec’/meter, k = 0.1, 

g0 = 10 meter/set, V’ = 3000 meter/set; p = l/200 sec.-l, ‘I’ = 190 sec. 
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The optimal moment of time t I for the separation of the first stage, 

under the above hypothesis that the rocket is moving in a homogeneous 

gravitational field, in 156.2 seconds. 

If the rocket is moving in a nonhomogeneous gravitational field, the 

quantity t 1 found by means of the equation (3.13) is 154 seconds. 

The maximum velocity of the composite rocket at the end of the active 

regime in a homogeneous gravitational field is 5528 meter/set, and in a 

nonhomogeneous field it is 5623 meter/set. 
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